

Compiling Constraint Networks into Multivalued Decomposable Decision Graphs

Motivations & Contributions

- Constraint programming is a *useful approach* for representing and solving combinatorial problems
- However no performance guarantees are offered for many tasks (consistency, solution counting, solution enumeration, optimization, etc.) in on-line applications
- Knowledge compilation provides guarantees for such tasks, by encoding the constraint network into an appropriate representation
- We defined a language MDDG for compiling constraint networks (N), such that all aforementioned tasks can be achieved in polynomial time from MDDG representations
- We designed and evaluated a *compiler* (cn2mddg) targeting this language

<u>A Top-Down</u> Compiler

- Decision-DNNF corresponds to the proper subset of MDDG where each variable is Boolean
- The key tractable queries and transformations offered by Decision-DNNF are also offered by MDDG

Caching Technique

- Caching is a key technique of any compiler computing DAG-based representations
- Two networks are detected as "equivalent"

Universal Constraints

 Universal constraints are constraints that are *necessarily satisfied* whatever the values given to the variables in their scopes

- Following the trace of a solver
- Taking into account the structure of the problem by considering its primal graph

- Techniques used
 - Component analysis
 - > Specific caching technique
 - > Universal constraints
 - > Specific variable selection heuristic

Variable Selection Heuristic

- The heuristics used for solution finding are not dedicated to knowledge compilation
- We considered a heuristic *bc* based on the

- when they are identical
- For an efficient caching, the size of the entries must be small
 - > one stores the current domains of the current unassigned variables
 - > $\forall C_i \in \mathcal{N}$, if C_i is AC, $|C_i| > 2$ and $\exists X_j \in C_i$ s.t. X_i has been reduced, then a projection of C_i is saved
- Once detected, a universal constraint is *simply deleted* from the current network

 The objective is to simplify the forthcoming treatments and to promote decomposition concept of betweenness centrality

• bc relies on the network structure $bc(X_i) = \sum_{X_j \neq X_i \neq X_k} \frac{\sigma_{X_i}(X_j, X_k)}{\sigma(X_j, X_k)}$

 Assigning the most central variables is a way to promote the generation of disjoint connected components of similar sizes

Experimental Results

- Benchmarks: 173 CNs from 15 data sets (configuration, scheduling, frequency allocation, ...)
- Each input CN has been compiled into
 - a MDDG representation using our compiler cn2mddg
 and
 - a CNF using the sparse encoding with a mixed clause encoding of the constraints

	CN							CNF - sparse mixed encoding			
Name	$\#\mathcal{X}$	#C	maxA	maxD	tw	time	size	#pv	#pcl	time	size
rect-packingrpp09	2196	2353	10	36	19	1673.33	514754	37044	593518	375.66	16118647
ghoulomb3-4-5	2033	2051	11	26	31	15.17	5162	MO	MO	MO	MO
talent-concert	325	352	46	316	52	1277.21	404437	MO	MO	MO	MO
CostasArray10	110	338	4	19	23	10.39	13440	149564	841930	ТО	-
photophoto2	89	133	21	11	21	499.93	9564220	685555	14326576	ТО	_
rlfap-scen4	680	3967	2	44	30	3.47	52226	915553	4875002	_	MO
renault-mod-32	111	154	10	42	11	20.39	160238	222582	1755876	ТО	_
renault-mod-11	111	149	10	42	10	16.22	41919	223718	1762294	3538.01	2399273
driverlogw-08c	408	9321	2	11	92	15.63	2931	9528	62825	6.42	139306

 $\frac{0}{6}$

a Decision-DNNF using the compiler Dsharp

- A time limit of 3600s and a total amount of 8GiB of memory have been considered for each instance
- cn2mddg succeeded in compiling 131 instances over 173 (32 TO and 10 MO)
 Dsharp succeeded in compiling 83 instances over 173 (24 TO and 39 MO)

Conclusion and Perspectives

- Contribution: A top-down algorithm cn2mddg for compiling finite-domain CNs into MDDGs has been designed and evaluated
- Take-home message:
 - While a translation to CNF enabling to take advantage of an upstream SAT solver can be a competitive approach for the CSP problem, it turns out to be a bad idea when the objective is to *compile* a constraint network
 Variable selection heuristics for CSP vs. variable selection heuristics for compilation
- Future work: Implementing additional queries and considering new heuristics for promoting decomposition

 $-(Y_5)$